skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Chi-Heng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exponential growth of digital content has generated massive textual datasets, necessitating the use of advanced analytical approaches. Large Language Models (LLMs) have emerged as tools that are capable of processing and extracting insights from massive unstructured textual datasets. However, how to leverage LLMs for text analytics Information Systems (IS) research is currently unclear. To assist the IS community in understanding how to operationalize LLMs, we propose a Text Analytics for Information Systems Research (TAISR) framework. Our proposed framework provides detailed recommendations grounded in IS and LLM literature on how to conduct meaningful text analytics IS research for design science, behavioral, and econometric streams. We conducted three business intelligence case studies using our TAISR framework to demonstrate its application in several IS research contexts. We also outline the potential challenges and limitations of adopting LLMs for IS. By offering a systematic approach and evidence of its utility, our TAISR framework contributes to future IS research streams looking to incorporate powerful LLMs for text analytics. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026